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Abstract

This paper presents an approach to modeling the dynamics of flexible multibody systems such
as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom
and complex dynamic interactions are typical in these systems. This paper uses spatial operators
to develop efficient recursive algorithms for the dynamics of these systems. This approach very
efficiently manages complexity by means of a hierarchy of mathematical operations.

1. Introduction

A wide range of complex mechanical systems can be modeled as a set of hinge-connected flexible
and rigid bodies. This paper presents an approach to modeling the dynamics of such systems that
uses spatial operators. This approach very efficiently manages complexity by means of a hierarchy
of mathematical operations. The highest level in this hierarchy consists of spatial operators which
relate velocities, accelerations, and forces between distinct points in the system. At lower levels, each

spatial operator is decomposed easily into detailed spatially recursive algorithms to do computation.
The recursive algorithms are cast within the highly developed framework of filtering and smoothing
theory. Algorithms which are quite popular in state estimation theory for discrete-time systems
can now be applied to conduct spatially recursive operations essential in multibody dynamics. The
main focus is on serial chains, but extensions to general topologies are also described. Comparison

of computational costs illustrates the efficiency of the recursive algorithms.

This paper uses spatial operators [1,2] to develop efficient recursive algorithms for flexible multibody
systems for such applications as flexible spacecraft and limber space robotic systems. A large
number of degrees of freedom and complex dynamic interactions are typical in these systems. The
main contributions of the paper are: (1) high-level architectural understanding of the mass matrix

and its inverse, (2) high-level expressions which can be easily implemented with spatial Kalman
. filtering and smoothing, (3) efficient inverse and forward dynamics recursive algorithms, and (4)

analysis of computational cost of the new algorithms. This adds to the rapidly developing body of
research in the recursive dynamics of flexible multibody systems [3-5].

2. Equations of Motion

Equations of motion are developed for a serial system formed by _N articulated flexible bodies.
Recursive relationships between the modal velocities, accelerations and forces are developed. Spatial

operators express these relationships compactly to obtain what is referred to here as the Newton-
Euler mass matrix factorization.

Each flexible body has a lumped mass model formed by a set of nodal rigid bodies. Such models

are typically developed using standard finite element analysis. The k th body has n,(k) nodes. The

jth node on the k th body is called the jtkh node. There is a body refeTvnce frame _k for the k th body.
Deformation of the nodes on the body is described with respect to this body reference frame, while

the rigid-body motion of the k th body is characterized by the motion of frame -$'k.

The 6-dimensional spatial deformation (slope plus translational) of node jk (with respect to frame

_'k) is u(jk)E _R6. The overall deformation field for the k th body is the vector u(k) = col{u(jk)} E

_6,_,(k). The vector from frame 5rk to the reference frame on node jk is l(k,jk) E _3.
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The spatialinertia of the jth node is

( "f(Jk) m(jk)f_(J_') ) 6 _ex6 (1)Ms(jk) = --m(jk)fi(jk) m(jk)I

where ff(jk), P(jk) and rn(jk) are the inertia tensor about the node reference frame, the vector
from the node reference frame to its center of mass, and the mass, respectively, for the jth node on

the k th body. The structural mass matrix for the k th body Ms(k) is the block diagnal matrix

Ms(k) = diag{Ms(jk)} e Rsn,(k)xsn,(k) (2)

The structural stiffness matrix is denoted Ks(k) E _n,(k)xOn,(k). For a 3-vector x, there is a

corresponding cross product matrix _. Both Ms(k) and Ks(k) are typically generated using finite
element analysis.

As in Figure 1, the bodies in the serial chain are numbered in increasing order from tip to base. The
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Figure 1: Illustration of links and hinges in a flexible serial multi-

body system

terms inboard (outboard) denote the direction along the serial chain towards (away from) the base

body. The k th body is attached on the inboard side to the (k + 1) th body by the k th hinge, and on
the outboard side to the (k - 1) th body by the (k - 1) th hinge. On the k th body, the node to which

the outboard hinge (the (k- 1) *h hinge) is attached is node tk, while the node to which the inboard

hinge (the k th hinge) is attached is node dk. The k th hinge couples nodes dk and tk+l. Attached

to each of these nodes are the k th hinge reference frames Ok and O + respectively. The number of

degrees of freedom (dofs) for the k th hinge is nr(k). The vector of configuration variables for the

k th hinge is O(k) E Nnr(_,), while the hinge's vector of generalized speeds is/3(k) E _nr(D. In general,
when there are nonholonomic hinge constraints, the dimensionality of/3(k) may be less than that of

0(k). For convenience, and without any loss in generality, it is assumed here that the dimensions of

the vectors O(k) and/3(k) are equal. In most situations,/3(k) is simply 0. However there are many
cases where the use of quasi-coordinates simplifies the dynamical equations of motion, and there

168



may be a better choice for fl(k). The relative spatial velocity Ay(k) across the hinge is H*(k)fl(k),

where H*(k) is the joint map matrix for the k th hinge.

A set of nrn(k) assumed modes is chosen for the k th body. Let II_(k) E _6 be the modal spatial

displacement vector at the j_h node for the r th mode. The modal spatial displacement influence

vector IId(k) E _6xnm(k) for the jtkh node and the modal matrix II(k) E _6,_,(k)×n,,(k) for the

k th body are

k r[(k) ,,,l

The r th column of II(k) is IIr(k), which defines the mode shape for the r th assumed mode for the

k th body. Let r/(k) E _n,_(k) be the vector of modal deformation variables for the k th body. The

spatial deformation of node Jk and the spatial deformation field u(k) for the k th body are

u(jk) = IIJ(k)rl(k) and u(k) = II(k)r/(k) (3)

Note that for cantilever modes

II:(k)=0 and r=l...nm(k) (4)

The vector of generalized configuration variables O(k) and the vector of generalized speeds X(k) for

the k th body are

where N(k ) _ rim(k) + nr(k). The overall vectors of generalized configuration variables 0 and
generalized speeds X for the serial multibody system are

v9 zx col _)(k •_v" and X =col x(k • _ (6)

where A/_ _N= 1A:(k). The number of overall degrees of freedom for the multibody system is
AF. The state of the multibody system is defined by the pair of vectors {,9, X}. For a given system

state {'),X}, the equations of motion relate the generalized accelerations _ and generalized forces
- T • _v'. The inverse dynamics problem is to compute the generalized forces T for a prescribed

set of generalized accelerations _. Conversely, the forward dynamics problem is to compute the

generalized accelerations )_ from the generalized forces T.

2.1 Recursive Propagation of Velocities

Let V(k) be the spatial velocity of the k th body reference frame _'k, i.e.,

V(k)= (w(k))v(k) • _6

where w(k) and v(k) are the angular and linear velocities respectively of _'k. The spatial velocity

V_(tk+l) • _6 of node tk+l (on the inboard side of the k th hinge) is related to the spatial velocity

V(k + 1) of the (k + 1) th body reference frame _-k+l, and the modal deformation variable rates

+ !):

Vs(tk+l) = ¢'(k + 1,tk+l)V(k + 1) + IIt(k + 1)_/(k + 1) (7)
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The spatial transformation operator ¢(x, y) E _6×6 is

(s)

where l(x, y) E _3 is the vector between the points x and y. Note the group property

¢(_, y)¢(y, z) = ¢(_, z)

for arbitrary points x, y and z. As in Eq. (7), and all through this paper, the index k will be used

to refer to both the k th body as well as to the k th body reference frame _'k with the specific usage
coming from the context. For instance, V(k) and ¢(k, tk) are the same as V(grk) and ¢(_-k, tk)

respectively.

The spatial velocity Y(O +) of frame O + (on the inboard side of the k th hinge) is related to Vs(tk+l)

by

v(o +) = ¢'(tk+l, Ok)Ys(tk+l) (9)

The relative spatial velocity Av(k) across the U h hinge is H*(k)j3(1,:), and so the spatial velocity

V(Ok) of frame Ok on the outboard side of the k th hinge is

V(Ok) = V(O +) + II*(k)j3(k) (10)

The spatial velocity V(k) of the U h body reference frame is

V(k) = ¢*(Ok,k)V(Ok) - fi(dk) = ¢*(Ok, k)[V(Ok) -- IId(k)_(k)] (11)

Eq. (7), Eq. (9), Eq. (10) and Eq. (11) together imply

Y(k) = ¢*(k + 1,k)V(k + 1) + ¢*(tk+a,k)IIt(k + 1)_/(k + 1)

+¢*(Ok,k) [H*(k)_(k)- IId(k)_(k)] (12)

Thus, with _(k) _ nm(k) + 6 and Eq. (12), the modal spatial velocity Vm(k) E _'(k) for the

k th body is

=zx ( V(k)C?(k)) = *'(k + 1,k)Vm(k + 1)+ 7-l*(k)x(k) E _._(k) (13)vm(k)

where the interbody transformation operator _(., .) and the modal joint map matrix 7-l(k) are

¢(k+l'k) A (0 [IIt(k+l)]'¢(t_+l'k))_(k+l)×_(k)=0 ¢(k+l,k) E (14)

7./(k) A (I-[IIJ:(k)]" I _'(k) x:F(k) (15)
= \ )o H_(k)

HT(k) zx H(k)¢(Ok,k) E _n,(k)×6, and IId(k) _ ¢*(Ok,k)IId(k) E _6xX(k)

_(k + 1, k) = A(k + 1)B(k + 1, k) (16)

where

Note that

= ¢(k,t_)
e _(k)x6 and B(k + 1, k) A__[0, ¢(tk+x,k)] E _6x_(t:) (17)

where
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Also, the modal joint map matrix 7-/(k) can be partitioned as

_(k)=(Tll(k) )7"lr(k) E R N'(j`)x_(k)
(18)

where

_ [ -] -to,7-lf(k) A I, -[II_-(k)] E _n=(k)×_'(k) and 7-/T(k) A

NWith _" = _[_k=l _'(k), the spatial operator C¢ is defined as

(o00 00/¢(2,1) o ... o 0
& =_ 0 ¢(a,2) ... 0 0 • _Xx_

: : "'. : i

0 0 ... O(N,N-1) 0

Note that E¢ is nilpotent (i.e. CN = 0) and define the spatial operator • as

¢ _ [i_&]-_=i+&+...+gg-_=

H(k)¢(Ok, k)] E _n,(k)x_(k) (19)

I 0 ... O]

@(2,1) I ... 0 _x_
• . ... : E

(I,(N,I) @(N,2) ... I

(20) "

(21)

where

@(i,j)_@(i,i-1) ..- @(j+l,j) for i>j

Also define the spatial operator 7-/_ diag{_(k)} _x_.E It follows that

Vm = @*7"/'X (22)

where Vm A col(Vm(k)} E _,27.

2.2 Modal Mass Matrix for a Single Body

An expression for the modal mass matrix of the k th body is derived. Denote by Vs(jk) • _6 the

spatial velocity of node jk. Vs(k) _ col{Vs(jk) } • _6n,(k) is the vector of all nodal spatial velocities

for the k th body. It follows (as in Eq. (7)) that

V,(k) = B*(k)Y(k) + ¢_(k) = [II(k), B*(k)]l_(k) (23)

where

B(k) _ [¢(k, lk),¢(k,2k),'" ,¢(k, ns(k))] • _6xsn..(k) (24)

Since Ms(k) is the Structural mass matrix of the k th body, the kinetic energy of the k*h body is

1V:(k)Ms(k)Vs(k) = 1V_(k)Mm(k)Vm(k)

where

- B(k) Ms(k)[n(k), B'(_)I= g;/(k) M;:(k)
• R'7(k)×_(k)(25)
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Corresponding to the generalized speed vector x(k), Mm(k) is the modal mass matriz of the

k th body. In the block partitioning in Eq. (25), the superscripts f and r denote the flexible and

rigid blocks respectively. Thus M_1(k) represents the flex/flex coupling block, while M_r(k) the
fiex/rigid coupling block, of Mm(k). Note that M_r(k) is precisely the rigid body spatial inertia of

the k th body. Indeed, M,_(k) reduces to the rigid body spatial inertia when the body flexibility is
ignored, i.e., no modes are used, since in this case nm(k) = 0 (and n(k) is null).

Since the vector l(k,jk) from _'k to node jk depends on the deformation of the node, the operator

B(k) is also deformation dependent. From Eq. (25) it follows that while the block ./Vl_Y(k) is

deformation independent, both the blocks M/_(k) and M_(k) are deformation dependent. The
detailed expression for the modal mass matrix can be defined using modal integrals which are
computed as a part of the finite-element structural analysis of the flexible bodies. These expressions
for the modal integrals and the modal mass matrix of the k th body can be found in [6]. Often the
deformation dependent parts of the modal mass matrix are ignored, and free-free eigen-modes are
used for the assumed modes II(k). When this is the case, M_/r(k) is zero and M_I(k) is block
diagonal.

2.3 Recursive Propagation of Accelerations

Differentiation of the velocity recursion equation, Eq. (13), results in the following recursive ex-

pression for the modal spatial acceleration am(k) E _7(k) for the k th body:

am(k) z_m(k)== (_(k))=a(k) _'(k+l,k)am(k +1)+ 7-l'(k)_(k)+am(k) (26)

where a(k) = V(k), and the Coriolis and centrifugal acceleration term am(k) • _(1¢) is

d_*(k)
am(k) = dq_'(kdt + l'k)vm(k + 1) + _x(k) (2"/)

The detailed expressions for am(k) can be found in [6]. Defining am = col{am(k)} • _ and

a,_ = col{am(k)} • _7', Eq. (26)can be reexpressed using spatial operators in the form

= + am) (28)

The vector of spatial accelerations of all the nodes for the k th body, as(k) _ col{as(jk)}

• _6,_,(k), is obtained by differentiating Eq. (23):

= = [n(k), + a(k) (29)
where

= { )} din(k), ) ea(k) ,,x col a(jk = dt (30)

2.4 Recursive Propagation of Forces

The equations of motion for the k th body are now developed. Let f(k - 1) • _6 denote the effective

spatial force of interaction, referred to frame _-k-1, between the k th and (k- 1) th bodies across the

(k - 1) th hinge. Recall that the (k - 1) th hinge is between node tk on the k th body and node dk-1

on the (k - 1) th body. With fs(jk) e _ denoting the spatial force at a node jk, the force balance
equation for node tk is

f,(tk) = ¢(tk,k -- 1)f(k - 1) + Ms(tk)a,(tk) + b(tk) + fg(t_) (31)
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Forall nodes other than node tk on the U h body, the force balance equation is

fs(jk) = M,(jk)a,(jk) + b(jk) + fK(jk) (32)

In the above, fK(k) = K,(k)u(k) • _n,(k) is the vector of spatial elastic strain forces for the nodes

on the k th body, while b(jk) E _o is the spatial gyroscopic force for node jk and is given by

( C_(jk)(f(jk)w(jk) ) E _6 (33)b(jk ) = m(jk )C.,(jk )_7;(jk)p(jk )

where w(jk) E _73 denotes the angular velocity of node jk. Define

/ 0/C(k,k- 1) _ ¢(tk, k- 1) e _6_(k)x6 and b(k) _- col b(jk) • _6n,(k) (34)

0

Eq. (31) and Eq. (32) imply

h(k) = C(k,k - 1)f(k - 1) + Ms(k)a,(k) + b(k) + g,(k)u(k) (35)

where fs(k) _- col{fs(jk)} E N 6n_(k). Noting that

f(k) = B(k)L(k) (3O)

and using the principle of virtual work, it follows from Eq. (23) that the modal spatial forces

fro(k) E _(k) for the k th body are

= B(k) fs(k) = f(k)

Premultiplying Eq. (35) by B(k) and using Eq. (25), Eq. (29), and Eq. (37) leads to the

following recursive relationship for the modal spatial forces:

fro(k) = _(k,k - 1)fm(k - 1) + Mm(k)am(k) + bin(k) + K,_(k),_(k) (38)

where

and the modal stiffness matrix

U'(k) )B(k) [b(k)+ Ms(k)a(k)] •
(39)

Km(k),_= ( II*(k)Ks(k)II(k) O)0 0 E _p_'(k) x3_(k) (40)

The expression for ICm(k) in Eq. (40) uses the fact that the columns of B*(k) are the deformation

dependent rigid body modes for the k th body, and hence they do not contribute to its elastic strain
energy. When a deformation dependent structural stiffness matrix h'_(k) is used,

K_(k)B*(k)=O (41)

IIowever, common practice (followed in this paper) uses a constant, deformation-independent struc-
tural stiffness matrix. This leads to the apparently anomalous situation wherein Eq. (41) does not

hold exactly. All these fictitious extra terms on the left-hand side of Eq. (41) are commonly ignored.
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The velocity-dependentbias term b,,_(k) is formed using modal integrals generated by standard
finite-element programs, and a detailed expression for it is given in [6]. From Eq. (38), the operator

expression for the modal spatial forces f,n _= col{fro(k)} e R _ for all the bodies in the chain is

where

f,n = ¢(Mrnam ÷ bm+ Km_) (42)

.Mm ZXdiag{Mm(k)} E _._x_' Km zx diag(Km(k)} E _'x]7, and b,_ _ col(bin(k)} E _'_

From the principle of virtual work, the generalized forces vector T E _r for the multibody system
is

T = 7-/f,_ (43)

2.5 Operator Expression for the System Mass Matrix

Collection of the operator expressions in Eq. (22), Eq. (28), Eq. (42) and Eq. (43) leads to:

Vm = ¢*_'x
a._ = _*(_'_ + am)
Sm = ¢(Mmam +bm + ICme) = CMm¢*n*)_ + ¢(M_¢*am + b_ + K_9)

T = 7"Lfro = "H,_Mm_*7-l*:_ + 7_(Mm_*am + b,n)

= M_+C

where

(44)

M _ _l_M,,_¢'_* E _f×H and C zx 7"l_(Mm¢*am +bm + If,,,O) E _¢ (45)

Here .£4 is the system mass matrix. The expression _/(I)M,n¢*_/* is referred to as the Newton-Euler

Operator Factorization of the mass matrix. The term C is the vector of Coriolis, centrifugal, and
elastic forces for the system.

The operator expressions for M and C are identical in form to those for rigid muttibody systems
(see [1, 7]). This similarity is extremely useful in the extension of recursive algorithms from rigid
multibody systems to flexible multibody systems.

3. Composite Body Forward Dynamics Algorithm

The forward dynamics problem for a multibody system requires computing the generalized accel-
erations _ for a given vector of generalized forces T and state of the system {#, X}. The composite
body forward dynamics algorithm described below consists of (a) computing the system mass matrix
f14, (b) computing the bias vector C, and (c) solving the linear matrix equation for _:

.Ad_ = T - C (46)

Section 4 describes the recursive articulated body forward dynamics algorithm that does not require

the explicit computation of either A4 or C.

Lemma 3.1:
bodies in the serial chain as follows:

R(0) = 0

fork = 1-.-N

R(k) = ,_(k,k- 1)R(k- 1)¢*(k,k- 1)+ Mm(k)

end loop

Define the composite body inertias R(k) E _XT(k)x_(k) recursively for all the

(47)
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AlsodefineR A diag(R(k)} E _×X'. Then, observe the following spatial operator decomposition

where _ A= il_ - I:

_M,n¢" = R+_R+R_* (48)

Physically, R(k) is the modal mass matrix of the composite body formed from all the bodies
outboard of the k th hinge by freezing all their (deformation plus hinge) degrees of freedom. It

follows from Eq. (45) and Lemma 3.1 that

.M = T/_Mm_*'H* = 7/R_* + 7_R_* + 7-/R_*_* (49)

Note that the three terms on the right of Eq. (49) are block diagonal, block lower triangular and

block upper triangular respectively. The algorithm for computing the mass matrix M computes
these terms recursively. The main recursion proceeds from tip to base, and computes the blocks

along the diagonal of M. As each such diagonal element is computed, a new recursion to com-
pute the off-diagonal elements is spawned. Its structure is similar to that of the composite body
algorithm for computing the mass matrix of rigid multibody systems (see [8,9]), and is as follows:

R(O) = O
fork = 1.--N

R(k) = _(k,k - 1)R(k - 1)_*(k,k - 1) + Mm(k)

= A(k)¢(tk,k- 1)Rr_(k - 1)¢'(tk,k- 1)A*(k)+ Mm(k)

x(k) = R(k)W(k)
Ms(k,k) = n(k)X(k)

forj = (k+l)..-N

X(j) = _(j,j- 1)X(j- 1) = .A(j)¢(tj,j- 1)Xr(j- 1)

jt4(j,k) = M*(k,j) = 7-l(j)X(j)

end loop

end loop (50)

The structure of the above algorithm for computing the mass matrix closely resembles the composite

rigid body algorithm for computing the mass matrix of rigid multibody systems [8, 9]. Like the
• latter, it is also highly efficient. Additional computational simplifications of the algorithm arising

from the sparsity of both 7-ll(k ) and _r(k) are easy to incorporate.

4. Factorization and Inversion of the Mass Matrix

An operator factorization of the system mass matrix M, referred to as the Innovations Operator
.Factorization, is derived. This factorization is an alternative to the Newton-Euler factorization in

Eq. (45). In contrast with the latter, the factors in the Innovations factorization are square and
invertible. Operator expressions for the inverse of these factors lead to an operator expression for
the inverse of the mass matrix. Use of further operator identities results in the recursive articulated

body forward dynamics algorithm in Section 5. The operator factorization and inversion results
here closely resemble those for rigid multibody systems (see [1]).

The following recursive algorithm defines some required articulated body quantities. This algorithm
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hasthe structureof the Riccati equation of Kalman filtering theory [9]:

fork =

P+(0) = 0
1...N

P(k) = @(k,k - 1)P+(k - 1)¢*(k,k- 1) + Mm(k) e _,_(k)x?7'(_)

D(k) = 7-l(k)P(k)?'l*(k) e _(k)×N'(k)

G(k) = P(k)7l*(k)D-'(k) e _'(k)xZ(k)

K(k + 1, k) = ¢(k + 1,k)G(k) • _ "_(k)×At(k)

_(k) = I- a(k)_(k) • _(k)×_(k)
P+(k) = "_(k)P(k) • _(k)×:W(k)

_,(k+ 1,k) = ¢(k + 1,k)_(k) • _,V(k)×Te(k)
end loop

(51)

The operator P E _x_ is defined as the block diagonal matrix with the k th diagonal element

being P(k). The quantities defined in Eq. (51) form the component elements of the following spatial

D =_
A

G =

A
K =

_ A
7" =

A
£,

_P_*= diag{D(k)} • _fxX

P_*D -1 = diag{G(k)} • _xH

C,C • _×z

I- G_/: diag{_(k)} • !}{_×X'

(52)

operators:

The 0nly nonzero block elements of K and g_ are the elements K(k + 1, k) and ¢(k + 1, k) respec-
tively along the first sub-diagonal. The spatial operator G is formed by a set of spatial Kalman
gains [9] for a spatially recursive Kalman filter.

As in the case for go, £2 is nilpotent, so the operator ¢ can be defined as

I 0 ... 0 /

_,(2,1) / ... o _.-,,,_,
: : -. • •

q(N, 1) _(N,2)... I

where

(53),r = (r-,'.)-_ =

_(i,j)_q_(i,i-1) --- $(j+l,j) for i>j

The structure of the operators $q, and $ is identical to that of the operators £¢ and q_ respectively
except that the component elements are now qJ(i,j) rather than ¢(i,j). Also, the elements of
q_ have the same semigroup properties as the elements of the operator ¢I,, and as a consequence,
high-level operator expressions involving them can be directly mapped into recursive algorithms,
and the explicit computation of the elements of the operator • is not required.

The Innovations Operator Factorization of the mass matrix is defined in the following lemmas

established in [1].

Lemma 4.1:

A4 = [I + 7-l¢I(]D[I + 7-l¢I(]" (54)
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Note that the factor[I + 7-/¢h']E _ArxAr is square, block lower triangular and nonsingular, while
D is a block diagonal matrix. This factorization may be regarded as a block LDL" decomposition
of A4. The following lemma gives the closed form operator expression for the inverse of the factor

[I + _t¢I¢].

Lemma 4.2:

[I + u¢I,]-' = [t- uol1,] (55)

Lemma 4.3:

.M -1 = [I - 7-lolh']" D-'[l - 7-lOth'] (56)

Once again, note that the factor [I- _/_K] is square, block lower triangular and nonsingular
and so Lemma 4.3 may be regarded as providing a block LDL* decomposition of .M -1 This

decomposition however is model-based, in the sense that the physical model of the system is used
to conduct computations. This means that every step in the decomposition has a corresponding

physical interpretation which adds a substantial amount of insight into the decomposition.

5. Articulated Body Forward Dynamics Algorithm

The operator-based mass matrix inverse leads to a recursive forward dynamics algorithm. The
structure of this algorithm is completely identical in form to the articulated body algorithm for serial
rigid multibody systems. Its structure is that of a Kalman filter and a Bryson-Frazier smoother [9].

The following lemma, established in [1], describes the operator expression for the generalized ac-
celerations _' in terms of the generalized forces T.

Lemma 5.1:

7-lolh']'D-l[T-'Hol{IfT't + Pare +bm + h',,_i)}] - h'*ol*am[I- (57)

As in the case of rigid multibody systems [1, 10], the direct recursive implementation of Eq. (57)
leads to the following recursive forward dynamics algorithm:

z+(O)= 0
fork = 1..-n

z(k) = ¢(k,k - 1)z+(k - 1) + P(k)am(k) + b,_(k) + I(m(k)O(k)

e(k) = T(k)- 7-/(k)z(k)

u(k) = D-a(k)e(k)

z+(k) = z(k)+G(k)e(k)

end loop

am(. + l) = 0
fork .= n...1

_.+,(k) = ¢-(k + 1,k)o_.(k + 1)
_(k) = ,,(k) - c-(_-)_(k)

o.,(k) = o+,(k)+ U'(k)i(k)+ a.,(k)
end loop

(58)

All the degrees of freedom for each body are characterized by its joint map matrix "H*(.) and are
processed together at each recursion step in this algorithm. IIowever, t)y taking advantage of the
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sparsityandspecialstructureof the joint mapmatrix, additionalreductionin computational cost
is obtained by processing the flexible dofs and the hinge degrees of freedom separately. These
simplifications are described in the following sections.

Instead of giving detail, the conceptual approach to separating modal and hinge degrees of freedom
is described. First, recall the velocity recursion equation in Eq. (13)

Ura(k) : _*(k + 1, k)Vm(k + 1) + 7-/*(k)x(k ) (59)

and the partitioned form of _(k) in Eq. (15)

7-[(k)=("'f(k) )7-lr(k) (60)

Introducing a dummy variable k', rewrite Eq. (59) as

Vm(k') = _*(k + 1,k')Vm(k + 1) + 7-l_(k):l(k)

l_(k) = ¢)'(k',k)Vm(k') + 7-l:(k)fl(k) (61)

where

l,(k + 1,k') =zx(I)(k + 1,k) and O(k',k) a= I

Conceptually, each flexible body is now associated with two bodies. The first one has the same
kinematical and mass/inertia properties as the real body and is associated with the flexible degrees
of freedom. The second body is a fictitious body, and it is massless and has zero extent. It is

associated with the hinge degrees of freedom. The serial chain now contains twice the number of
bodies as the original one, with half the new bodies being fictitious. The new _* operator has
the same number of columns but twice the number of rows as the original _* operator. The new
(I) operator has twice the number of rows as well as twice the number of columns as the original.
An analysis similar to those of the previous sections leads to an operator expression similar to
Eq. (57). This implies a recursive forward dynamics algorithm like Eq. (58). However each sweep
in the algorithm now contains twice as many steps as the original algorithm. But since each step
now processes a smaller number of degrees of freedom, the overall computational cost is reduced.

5.1 Simplified Articulated Body Forward Dynamics Algorithm

The complete recursive articulated body forward dynamics algorithm for a serial flexible multibody
system follows from recursive imt)lementation of Eq. (57). The algorithm has the following steps:

(a) compute the articulated body quantities, (b) do a base-to-tip recursion for the modal spatial
velocities _(k) and the bias terms am(k), bin(k), and (c) do a tip-to-base recursion followed by a
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base-to-tiprecursionfor the joint accelerations)_.

P+(0) = 0
fork = 1...N

F(k) = ¢(tk,k-1)P+(k- 1)¢'(tk,k-l)

P(k) = .A(k)F(k)A'(k) + Mm(k)

Of(k) = ?-ll(k)P(k)n*I(k )

.(k) = [Prl(k), Pr*(k)lT-l*I(k)

g(k) = /_(k)D-]'(k)

PR(k) = P"(k) - g(k)p'(k)

DR(k) = H:r(k)PR(k)H_(k)

GR(k) = PR(k)H_(k)D_l(k)

• R(k) = I- GR(_')Hf(k)
P+ (k ) : -f .( k )P.(k )

end loop

(62)

z_(o) = 0
fork = 1...N

=(k) = :_(k)

= A(k)C(tk,k - 1)z+(k - 17 + bin(k) + h'm(k)O(k) E _:_(k)

el(k) = Tl(k )- zl(k ) + [IId(k)]'z_(k) E _,_,,,(k)

uj(k) = D71(k)e](k) E Nn._(k)

_n(_) = :r(_') + g(k)_j(k) + Pn(k)_mR(k) c _'_
¢R(k) = TR(k)- H_(k)zR(k) C _,Mk)

vn(k) = D_l(k)en(k) E R n_(k)

z_(k) = _n(k) + aRik)cR(k') c _6
end loop

(63)

_,.(N+ 1)=0
fork = N.-.1

o,_(k) = ¢'(tk+,,k).A'(k + l)am(k + l) E _6

/3(k) = .,(k) - O;_(k)_._(k) e _(k)

;i(k) ---- I_,](k) -- g'(k)an(k) E _nm(k)

( ;i(k) ) _(k)ore(k) = _,R(/,,)- ll}(k);i(k) e

end loop

The recursion in Eq. (63) is obtained by carrying out simplifications of the recursions in Eq. (58)
in the same manner as described in the previous section for the articulated body quantities.

In contrast with the composite body forward dynamics algorithm of Section 3, this algol ilhm

does not explicitly compute either A4 or C. This algorithm is similar to those for rigid multibody
systems [1,11].
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6. Computational Cost

The computational costs of the composite body and the articulated body forward dynamics algo-
rithms are compared. For low-spin multibody systems, it has been suggested in [12] that using
ruthlessly linearized models for each flexible body can lead to significant computational reduction
without sacrificing fidelity. These linearized models are considerably less complex than the full
nonlinear models and do not require much of the data on modal integrals for the individual flexible

bodies. All computational costs given below are based on the use of ruthlessly linearized models

and tile computationMly simplified steps described in [6].

6.1 Computational Cost of the Composite Body Forward Dynamics Algorithm

The composite body forward dynamics algorithm described in Section 3 is based on solving the
linear matrix equation

M =T-C

The computational cost of this forward dynainics algorithm is as follows:

1. The cost of colnputing R(k) for the k th body by using the algorithm in Eq. (50) is
2 _ 116]A.[48rim(k) + 90]M + [n,,_(t.) + _n,n(k) +

2. TILe contribution of tile k °' body to tit(' cost of COml)uting A4 (excluding cost of R(k)'s) using

the algorithm in Eq. (50) is
{k[12,,_(k) + 3,1nm(k) + 131} M + {k[lln_(k) + 24urn(k) + 13]} A.

3. Setting the generalized accelerations _ = 0, the vector C can l)e obtained by using an inverse
• " " e k0'

dynamics algorithm for computing the genera]|zed forces T. The contrlbutmn of th " body "
to the computational cost for C(k)is {2n_(k) + 54nm(k) + 206} M+ {2n2m(k) + 5Ohm(k) + 143} A.

4. The cost of colnputing T - C is {N'} A.

5. The cost of solving the linear equation in Eq. (46) for the accelerations _ is

[!Ar3 +
[6 2"--

The overall complexity of the composite body forward dynamics algorithm is O(Afa).

6.2 Computational Cost of the Articulated Body Forward Dynamics Algorithm

The articulated body forward dynamics algorithm is based on the recursions described in Eq. (62)
and Eq. (63). Since the computations in Eq. (47) can be done prior lo the dynamics simulalion,
the cost of this recursion is not included in the cost of the overall forward dynamics algorithm

described below:

1. The algorithm for the computation of the articulated body quanlities is given in Eq. (62). The
step involving the computation of D-I(k) can be carried out ell her by an explicit inversion of
D(k) with O(o3,,,(k)) cost, or I)y tile indirect procedure described in Eq. (62) with O(_,,2,,(/,'))
cost. The first method is lnore efficient than the second one for n,,(k) < 7.

• Cost of Eq. (62) for the k th body, based on the explicil inversion of D(k) (used when

_<7), is
5 3 , 2.5//2 (k) 7t;4 180} _/l "4- {_"m( )'J I- "_H,n(_) + "_{_l/rn(_)nL'7 m, "/ff "==3-nm(k)=l= 5 3 _ 21 2 . 5_._3871m(k) 161}A.

• Cost of Eq. (62) for the k th body based on the indirect computation of D-l(k) (used
when .,,,(k) >_8) is {t2n2.,(k") + 255n,,,(k) + 572} g + { + t82nm(k) + 415} A.
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2. Thecostfor the tip-to-baserecursionsweepin Eq. (63) for the k th body is

{n2m(k) + 25n,,_(k) + 49} M + {n_(k) + 24nm(k) + 50} A.

3. The cost for the base-to-tip recursion sweep in Eq. (63) for the k th body is {18nm(k) + 52} M+

{19nm(k) + 42} A.

The overall complexity of this algorithm is O(Nn2m ), where nm is all upper bound on the number

of modes per body in the system.

The articulated body algorithm is more efficient than the composite body algorithm as the nu tuber
of modes and bodies in the multibody system increases. Figure 2 contains a plot of the computa-
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Figure 2: A comparison of computational costs for the forward dy-
namics algorithms for a flexible multibody serial chain

system with 10 flexible bodies.

tional cost (in floating point operations) versus the number of modes per body for a serial (:hain
with ten tlexible bodies. The articulated body algorithm is faster by over a factor of 3 for 5 modes

per body, and by over a factor of 7 for l0 modes per body. The divergence between the costs for
the two algorithms becomes even more rapid as the number of bodies is increased.

7. Extensions to General Topology Flexible Multibody Systems

Extension to general tree and closed-chain systems is similar to methods given in prior resulls for

rigid body configurations [7]. The key is that the operator descril)tion does not change as the
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topologychanges.Extendingthe serialchainresultsof this paper to tree topologies takes the

following steps:

1. For any outward base to tip(s) recursion, at each body, the outward recursion must be con-

tinued along each outgoing branch emanating from the current body.

2. For an inward tip(s) to base recursion, at each body, the recursion must be continued inward
only after summing up contributions from each of the incoming branches of the body.

A closed-chain flexible multibody system can be regarded as a tree topology system with additional

closure constraints [7].

8. Conclusions

This paper uses spatial operator methods to develop a new dynamics formulation and spatially
recursive algorithms for flexible multibody systems. The operator description of the flexible system
dynamics is identical in form to the corresponding operator description of the dynamics of rigid
multibody systems. A significant advantage of this unified approach is that it allows ideas an(I
techniques for rigid multibody systems to be easily applied to flexible multibody systems. All
of the computations are mechanized within a spatially recursive Kalman filtering and smoothing
architecture. An extension of this algorithm to handle prescribed motion is described in reference

[13].

The computational efficiency of tile dynamics algorithms described in this paper makes it possibh, to
implement real-time, high-fidelity, hardware-in-the-loop simulation of complex multibody systems
such as spacecraft, robot manipulators, vehicles etc. Such simulations are essential during tim

design and testing of control and fault recovery algorithms. The articulated body forward dynamics
algorithm is currently being used to simulate the dynamics of planetary spacecraft. One application
is a spacecraft currently being assembled for a comet and asteroid rendezvous mission [14]. The
multibody model for the spacecraft is of tree topology, and consists of a flexible central bus with 9
articulated appendages and 22 hinges' degrees of freedom. The simulation software provides a new

capability for high speed simulation of the spacecraft. A real-time version has also been developed.
Validation of this software was carried out by running independent simulations of the spacecraft

using a standard flexible multibody simulation package [15]. Results from the two independent
simulations show complete agreement.
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